ClickCease
+ 1-915-850-0900 spinedoctors@gmail.com
Page Filifilia

Epigenetic's

Back Clinic Epigenetics Vaega Fa'afomai Fa'atino. O le su'esu'ega o suiga fa'aleaganu'u i le fa'aaliga o le kenera (genes active versus inactive genes) e le aofia ai suiga i le DNA sequence, o se suiga i le phenotype e aunoa ma se suiga i le genotype, lea e a'afia ai le faitau o sela. Ole suiga ole epigenetic ose mea masani, fa'alenatura e mafai fo'i ona a'afia i le tele o mea: tausaga, si'osi'omaga, olaga, ma le tulaga o fa'ama'i. Epigenetic modifications e masani ona fa'aalia pe fa'afefea ona va'ava'ai sela i sela pa'u, sela o le ate, sela fai'ai, ma isi.

O suʻesuʻega fou ma faʻaauau o loʻo faʻaauau pea ona faʻaalia le matafaioi a epigenetics i le tele o faʻafitauli o tagata ma faʻamaʻi oti. O faʻailoga epigenetic e sili atu ona mautu i le taimi o le matua. Ae ui i lea, o loʻo manatu pea e faʻamalosi ma suia e ala i filifiliga o le olaga ma le siosiomaga. Ua amata ona manino mai o aafiaga epigenetic e le gata e tupu i totonu o le manava ae i le gasologa atoa o le olaga o le tagata. O le isi su'esu'ega e mafai ona toe suia suiga epigenetic. Le tele o faʻataʻitaʻiga o epigenetics e faʻaalia ai le auala e mafai ai e filifiliga eseese o le olaga ma le faʻaalia o le siosiomaga ona suia faʻailoga i le DNA ma faia se sao i le fuafuaina o taunuuga o le soifua maloloina.


Genetic-Epigenetic Nutrition ma lo tatou Soifua Maloloina | El Paso, TX.

Genetic-Epigenetic Nutrition ma lo tatou Soifua Maloloina | El Paso, TX.

E fa'afefea ona saofagā le epigenetic ma mea'ai fa'apitoa mo le soifua maloloina lelei?

O le to'atele oi tatou e iloa mea'ai le lelei e a'afia ai o tatou tino. latou

  • Faagesegese le Metabolism
  • Faaopoopo le Mamafa
  • Fa'apala ma fa'ama'a'a ala ma isi.
soifua maloloina epigenetic el paso tx.

Ae o lea ua iai meaʻai ma meaʻai e mafai ona fesoasoani ia i tatou i se auala ma e sau mai se nofoaga tatou te le mafaufau i ai, ma o lo tatou DNA lena.

Nutriepigenomics e suʻesuʻeina fesoʻotaʻiga i le va o meaʻai ma biomarkers e mafai ona faʻapipiʻi pe aveese mai a tatou DNA. O le mea lea e liliu ai a tatou kenera i luga pe tape.

O suʻesuʻega fou o loʻo faʻaalia ai le mautinoa mea'ai po'o mea fa'aopoopo e mafai ona fetuutuunai le faailoaga o o tatou kenera, lea e mafai ona aafia ai lo tatou soifua maloloina.

Nutritional genomics o lo'o fa'afouina faiga fa'alesoifua maloloina ma le soifua maloloina lautele:

Mea'ai, fa'amalositino, ma le fa'aalia o le si'osi'omaga o elemene uma ia na fa'aalia ai se sao i le fesuia'iina o kenera i luga ma tape ese e ala i epigenetics. O le fetuutuuna'i o tulaga o le olaga e mafai ona pulea ai le gafatia e fa'aitiitia ai fa'ama'i ma iai se aafiaga lelei i lo tatou soifua maloloina.

Soifua Maloloina mai i itu uma ua amata ona faʻapipiʻi epigenetics i totonu o latou faʻataʻitaʻiga faʻamoemoe e tuʻuina atu fuafuaga faʻapitoa ma faʻapitoa mo togafitiga.

toe faʻafoʻi togafitiga faafomaʻi

"O le faʻapipiʻiina o faʻamatalaga e pei o meaʻai, olaga, mea tau le siosiomaga, talaʻaga o aiga, faʻamaoniga, ma suʻesuʻega faʻatasi ai ma epigenetics e mafai ona fesoasoani e taʻitaʻia ai se tasi i se tulaga o le soifua maloloina lelei," o le tala lea a Kristy Hall, MS, RNCP, ROHP, o se komiti faʻamaonia o meaʻai taumafa ma na faavaeina le Living Well Nutrition o loʻo faʻaaogaina suʻega epigenetic, faufautua tau meaʻai, ma se auala faʻapitoa e sili atu ona saunia mo ana tagata faʻatau.


Ia 15, 2018Bailey Kirkpatrick meaʻaiFa'ama'i & Fa'aletonusiosiomagaTala Fou & Faʻamatalaga
fuafaatatau paleni

O lo'o i ai le avanoa o tagata su'esu'e i mea'ai ua resitalaina e faia ai fautuaga fa'amea'ai e fa'atatau i mea'ai e mafai ona fa'aleleia atili ai le soifua maloloina o tagata.

O mea'ai o se tasi lea o mea taua o le siosiomaga e fuafua ai lo tatou soifua maloloina. O fa'ama'i tumau e aofia ai:

  • Tusia le maʻisuka 2
  • Metabolic syndrome
  • Paʻi cardiovascular
  • Fa'ama'i fa'ama'i
  • Vaʻaia eseese
  • E amataina pe faatelevaveina e mea'ai/mea'ai

Ole vaega ole su'esu'ega tau mea'ai e mafai ona ta'ua ole Nutritional Genomics.

Nucleotide polymorphisms tasi (SNPs) o eseesega faavae-paiga tasi i le DNA. Latou te fai ma sui o se ituaiga autu o fesuiaiga o kenera tagata.

DNA SNP

O le mole mole DNA pito i luga e ese mai le mole DNA pito i lalo i se nofoaga e tasi (se C/A polymorphism)

Nutritional genetics poʻo nutrigenetics e aofia ai le fa'ailoaina, fa'avasegaga, ma fa'ailoga o suiga ole kenera a le tagata lea e suia ai le metabolism/fa'aogaina o mea'ai ma fa'apalepale mea'ai Ata1.

soifua maloloina epigenetic el paso tx.
IOM. Nutrigenomics ma tua atu: Faʻamatalaga o le lumanaʻi. Uosigitone, DC: The National Academies Press; 2007.

Fa'aoga: Genetic & Epigenetics

Nutrient, mo se faataitaiga, Foma'i, o ni aafiaga mamana o le genome expression ma le mautu, ma o nei kene-nutrient fegalegaleaiga e mafai ona sili ona lelei mo le puipuia o faʻamaʻi.

soifua maloloina epigenetic el paso tx.

Mea'ai Ta'ito'atasi

O lo'o fa'aauau pea le folafolaga mo le soifua maloloina lelei e ala i taumafa, ae o lo'o fa'atumauina e le mamalu o le atunu'u ni fa'amoemoega lelei, e pei ona molimauina i le fa'aogaina o mea'ai fa'aopoopo.

O su'esu'ega fa'asaienisi o lo'o fa'aalia ai o mea'ai i mea'ai eseese ma mea'ai fa'aopoopo tatou te 'ai e ono mafai ona fetu'una'i pe toe fa'afo'i suiga fa'atosina. O lenei faʻamaoniga e mafai ona faʻaaogaina i le faia o filifiliga sili atu o le olaga.

Blueberries e matua maualuga lava i antioxidants ma e manatu o lenei 'superfood' e mafai ona faʻaitiitia ai le faaleagaina o le DNA, ma puipuia ai tagata mai le kanesa ma atonu e faʻagesegese ai le matua. O le sua o le Blueberry ma le vaitamini C ua faʻaalia e mafai ona avea ma inhibitors methylation mo le MTHFR gene ma le DNMT1 gene i tagata.


Kim, M., Na, H., Kasai, H., Kawai, K., Li, Y.-S., & Yang, M. (2017). Fa'atusatusaga ole Blueberry (Vaccinium spp.) ma Vitamini C e ala ile Antioxidative and Epigenetic Effects in Human. Tusitala o le Puipuiga o le Kanesa, 22(3), 174–181.

O le aʻoaʻoina o mea tatou te 'ai ma mea e fai i o tatou tino, aemaise lava aʻafiaga epigenetic, e naʻo le tasi le laʻasaga latalata i le soifua maloloina lelei.

O le Matafaioi o Epigenetics i le Mafuaaga Ma le Masaʻi Faʻataʻi

O le Matafaioi o Epigenetics i le Mafuaaga Ma le Masaʻi Faʻataʻi

Epigenetic Abstract:

O le faʻateleina o le faʻateleina o le gaʻo ma le fesoʻotaʻiga e fesootaʻi atu ai, o se faafitauli ogaoga o le soifua maloloina lautele. E ui e le masalomia o le a iai se matafaioi a le kenera i le fuafuaina o le mafai e le tagata ona gafatia le mamafa ma le gaʻo, o le ituaiga o vailaau e iloagofie ai ua na o se vaega o le fesuiaiga. O lenei mea na mafua ai ona tuputupu ae le naunau e malamalama i le matafaioi a epigenetics o se tagata faufautua o fegalegaleaiga i le gataifale-siosiomaga e faavae ai le atinaeina o le oona ma ona aafiaga e fesootai ai. O le uluai faʻamaoniga i le lagolagoina o se vaega o epigenetics i le gaogao ma le ituaiga o le maʻisuka 2 (T2DM) na masani lava ona maua e suʻesuʻega a manu, lea na lipotia ai suiga o epigenetic i mea taua i le tino e sili ona taua pe a uma le fafagaina o le gaʻo ma le eseʻesega o le epigenetic i le va o manu niniʻi ma manu feʻai ma suʻesuʻega a le tagata lea na faʻaalia ai suiga o le iniseti ma le T2DM genes i tagata lautele / maʻisuka. Talu ai nei, o le alualu i luma i le epigenetic methodologies ma le faʻaitiitiga o tau o suʻesuʻega faʻatasi a le epigenome-wide (EWAS) ua faʻatautaia ai le faalauteleina o suʻesuʻega i tagata soifua. O nei suʻesuʻega na lipotia ai foʻi le eseesega o epigenetic i le va o tagata matutua / T2DM ma le soifua maloloina ma suiga i epigenetic e fesoʻotai ma meaʻai, paʻu o le mamafa, ma faʻamalositino. O loʻo i ai foi le faʻateleina o faʻamaoniga mai aʻoaʻoga a tagata ma meaola e faapea, o le sootaga i le va o meaʻai faʻamaʻi ma le aʻafiaga mulimuli o le gaʻo ma le T2DM e mafai ona faʻatalanoaina e le epigenetic suiga o le fanau. O le autu o lenei toe iloiloga o le otootoina lea o mea aupito lata mai i lenei vavave vave, faatasi ai ma se taulaiga faapitoa i le tagata soifua ma suesuega ole suesuega ole aafiaga o mea taumafa ma tulaga soifua (muamua ma le meli) i luga o le epigenome ma a latou sootaga ma le gasegase soifua maloloina. O faigata i le iloagofie o aʻafiaga mai mafuaʻaga i nei suʻesuʻega ma le taua tele o le faʻaaogaina o manu mo faʻataʻitaʻiga mafuaʻaga o mafutaga ma le tuʻuina atu o faʻamatalaga i lalo o faiga faʻavae e faʻasinoina foi. I le aotelega, o le vaega o epigenetics ma le soifua maloloina ole soifua maloloina ua vaʻaia le tutupu vave i se taimi puupuu. E ui o folafolaga i aso nei o loʻo folafola mai, o suʻesuʻega e faʻaauau, ma o le isi sefulu tausaga o loʻo folafola mai o se taimi o suʻesuʻega lelei i fegalegaleaiga faigata i le va o le genome, epigenome, ma le siosiomaga aʻo latou fesootaʻi atu i faʻamaʻi faʻamaʻi.

uputatala: Epigenetics, DNA methylation, oona, ituaiga 2 diabetes, Polokalame atinae

faʻatomuaga

Epigenetic aualaO le tele o mea taua, faʻamaʻi tele, ma malamalama atili i auala e faʻavae ai fegalegaleaiga i le va o le soifuaga, siosiomaga, ma genetics e taua tele mo le atinaʻeina o fuafuaga lelei mo le puipuiga ma togafitiga [1].

In a society where energy-dense food is plentiful and the need for physical activity is low, there is a wide variation in individuals� susceptibility to develop�obesity and metabolic health problems. Estimates of the role of heredity in this variation are in the range of 40�70 %, and while large genome-wide association studies (GWAS) have identified a number of genetic loci associated with obesity risk, the ~100 most common genetic variants only account for a few percent of variance in obesity [2, 3]. Genome-wide estimates are higher, accounting for ~20 % of the variation [3]; however, a large portion of the heritability remains unexplained.

Recently, attention has turned to investigating the role of epigenetic changes in the etiology of obesity. It has been argued that the epigenome may represent the mechanistic link between genetic variants and environmental�factors in determining obesity risk and could help explain the �missing heritability.� The first human epigenetic studies were small and only investigated a limited number of loci. While this generally resulted in poor reproducibility, some of these early findings, for instance the relationship between PGC1A methylation and type 2 diabetes mellitus (T2DM) [4] and others as discussed in van Dijk et al. [5], have been replicated in later studies. Recent advances and increased affordability of high- throughput technologies now allow for large-scale epigenome wide association studies (EWAS) and integration of different layers of genomic information to explore the complex interactions between the genotype, epigenome, transcriptome, and the environment [6�9]. These studies are still in their infancy, but the results thus far have shown promise in helping to explain the variation in obesity susceptibility.

There is increasing evidence that obesity has develop mental origins, as exposure to a suboptimal nutrient supply before birth or in early infancy is associated with an increased risk of obesity and metabolic disease in later life [10�13]. Initially, animal studies demonstrated that a range of early life nutritional exposures, especially those experienced early in gestation, could induce epigenetic changes in key metabolic tissues of the offspring that persisted after birth and result in permanent alterations in gene function [13�17]. Evidence is emerging to support the existence of the same mechanism in humans. This has led to a search for epigenetic marks present early in life that predict later risk of metabolic disease, and studies to determine whether epigenetic programming of metabolic disease could be prevented or reversed in later life.

O lenei toe iloiloga e maua ai se faʻamatalaga o le tatou iloiloga muamua o suʻesuʻega i epigenetics ma le oona i totonu o tagata [5]. O le matou iloiloga talu ai na faʻaalia ai taunuuga lelei o uluai suʻesuʻega, e aofia ai faʻamatalaga muamua o le epigenetic mo le gaʻo e mafai ona iloa i le taimi na fanau ai (eg, RXRA) [18]. Ae ui i lea, na faʻamaonia ai foi le faʻatapulaʻaina o faʻamaumauga o sailiiliga ma le leai o se tele o suʻesuʻega umi. O le iloiloga lata mai o loʻo taulai atu i atinaʻe talu ai nei i lenei faʻavavevavega o galuega, ma, aemaise lava i tagata soifua ma le suʻesuʻeina o suʻesuʻega o le aʻafiaga o meaʻai (muamua ma le postnatal) ma mea e ola ai i le epigenome ma le aʻafiaga o epigenetics i togafitiga o le gaʻo . Matou te faʻatautaia foi faigata i le faailoaina o mea e tutupu i nei suʻesuʻega ma le taua o faʻataʻitaʻiga manu i le tuʻuina atu o faʻamatalaga i auala.

toe iloilo

Epigenetic Suiga I Faʻailoga Manu o le Mafuaaga

lapisi taumafaAnimal models provide unique opportunities for highly controlled studies that provide mechanistic insight into�the role of specific epigenetic marks, both as indicators of current metabolic status and as predictors of the future risk of obesity and metabolic disease. A particularly important aspect of animal studies is that they allow for the assessment of epigenetic changes within target tissues, including the liver and hypothalamus, which is much more difficult in humans. Moreover, the ability to harvest large quantities of fresh tissue makes it possible to assess multiple chromatin marks as well as DNA methylation. Some of these epigenetic modifications either alone or in combination may be responsive to environmental programming. In animal models, it is also possible to study multiple generations of offspring and thus enable differentiation between trans-generational and intergenerational transmission of obesity risk mediated by epigenetic memory of parental nutritional status, which cannot be easily distinguished in human studies. We use the former term for meiotic transmission of risk in the absence of continued exposure while the latter primarily entails direct transmission of risk through metabolic reprogramming of the fetus or gametes.

Animal studies have played a critical role in our current understanding of the role of epigenetics in the developmental origins of obesity and T2DM. Both increased and decreased maternal nutrition during pregnancy have been associated with increased fat deposition in offspring of most mammalian species studied to date (reviewed in [11, 13�15, 19]). Maternal nutrition during pregnancy not only has potential for direct effects on the fetus, it also may directly impact the developing oocytes of female fetuses and primordial germ cells of male fetuses and therefore could impact both the off- spring and grand-offspring. Hence, multigenerational data are usually required to differentiate between maternal intergenerational and trans-generational transmission mechanisms.

O le Ata 1 o loʻo otootoina ai le tele o ituaiga o manu na faʻaaogaina e tuʻuina atu ai faʻamaoniga o le metabolic ma suiga o le epigenetic i fanau e fesoʻotaʻi ma le vaʻai matua. O loʻo i ai foʻi faʻamatalaga e uiga i suʻesuʻega e iloa ai le suia o faailoga epigenetic i tagata matutua o loʻo feagai ma luitau tuusaʻo lelei. O le laulau ua faʻatulagaina e ala i le tuʻufaʻatasia o ituaiga faʻafitauli faʻafitauli.

laulau 1(i) Suiga o le Epigenetic i le Atinaʻe Faʻatasi ma Meaʻai Fafaga I le taimi o le Gestation

Maternal nutritional supplementation, undernutrition, and over nutrition during pregnancy can alter fat deposition and energy homeostasis in offspring [11, 13�15, 19]. Associated with these effects in the offspring are changes in DNA methylation, histone post-translational modifications, and gene expression for several target genes,�especially genes regulating fatty acid metabolism and insulin signaling [16, 17, 20�30]. The diversity of animal models used in these studies and the common metabolic pathways impacted suggest an evolutionarily conserved adaptive response mediated by epigenetic modification. However, few of the specific identified genes and epigenetic changes have been cross-validated in related studies, and large-scale genome-wide investigations have typically not been applied. A major hindrance to comparison of these studies is the different develop mental windows subjected to nutritional challenge, which may cause considerably different outcomes. Proof that the epigenetic changes are causal rather than being associated with offspring phenotypic changes is also required. This will necessitate the identification of a parental nutritionally induced epigenetic �memory� response that precedes development of the altered phenotype in offspring.

(ii) Aafiaga o Meaʻai Taumafa I luga o le Fanau Epigenetic Marks

pepe o uu limaEmerging studies have demonstrated that paternal plane of nutrition can impact offspring fat deposition and epigenetic marks [31�34]. One recent investigation using mice has demonstrated that paternal pre-diabetes leads to increased susceptibility to diabetes in F1 offspring with associated changes in pancreatic gene expression and DNA methylation linked to insulin signaling [35]. Importantly, there was an overlap of these epigenetic changes in pancreatic islets and sperm suggesting germ line inheritance. However, most of these studies, although intriguing in their implications, are limited in the genomic scale of investigation and frequently show weak and somewhat transient epigenetic alterations associated with mild metabolic phenotypes in offspring.

(iii) Suʻesuʻega Faʻavaomalo o le Faʻaaogaina o Faʻavae Epigenetic Faʻateleina le Faʻatonuina o le Toto I le Atalii

sili atu meaai paleniO le faʻaaogaina o faʻamaumauga o le epigenetic i le tele o augatupulaga e lelei ona faʻamatalaina i faʻalaʻau laau ma C. elegans, but its significance in mammals is still much debated [36, 37]. An epigenetic basis for grand- parental transmission of phenotypes in response to dietary exposures has been well established, including in livestock species [31]. The most influential studies demonstrating effects of epigenetic transmission impacting offspring phenotype have used the example of the viable yellow agouti (Avy) mouse [38]. In this mouse, an insertion of a retrotransposon upstream of the agouti gene causes its constitutive expression and consequent yellow coat color and adult onset obesity. Maternal transmission through the germ line results in DNA methylation�mediated silencing of agouti expression resulting in wild-type coat color and lean phenotype of the offspring [39, 40]. Importantly, subsequent studies in these mice demonstrated that maternal exposure to methyl donors causes a shift in coat color [41]. One study has reported transmission of a phenotype to the F3 generation and alterations in expression of large number of genes in response to protein restriction in F0 [42]; however, alterations in expression were highly variable and a direct link to epigenetic changes was not identified in this system.

(iv) Faʻataʻitaʻiga Faʻaalia o Tagata Taitoatasi Ina ia Faʻateleina Mea Taumafa I totonu o le Falemeli

olaga faʻaonaponei i sisifoE ui o le tele o suʻesuʻega ua faʻamalamalamaina suiga o le epigenetone i meaʻai, e faʻaaoga ai le faʻaaogaina o nofoaga faʻataʻatia a le au faipisinisi, o loʻo i ai ni nai suʻesuega lautele na faia. O se suʻesuʻega talu ai nei sa taulaʻi i le fuafuaina o le epigenethera faʻasolosolo o mea taumafa maualuga / taumafa-meaʻai i totonu o tamaʻi matutua e faʻaaoga ai genome-wide generic expression ma DNA methylation analyzes [43]. O lenei suʻesuʻega na faʻaalia ai 232 faʻapitoa methylated eria (DMRs) i adipocytes mai le pulea ma le maualuga-gaʻo fafagaina o nifo. O le mea sili ona taua, o vaega tutusa o tagata mo le DMR misa sa ese foi le methylated i le tino o le tino mai le faitau aofaʻi o tagata maualuluga ma vaivai, ma ua faʻamaonia ai le maoae o le faʻasaoina o nei vaipanoa. O lenei taunuʻuga e faʻamalosia ai le taua o le DMR ua faʻamaonia i le faʻatonutonuina o le malosiaga o le homeostasis i mamame.

Suesuega Tagata

anomomy 3D faʻataʻitaʻiga

O le faʻaaogaina o faʻamaoniga mai suʻesuʻega manu ma le faʻalauteleina o avanoa o mea taugofie mo le vailaau o le vailaʻau, ua televave le faʻalauteleina o suʻesuʻega faʻataʻitaʻi i tagata. O nei suʻesuʻega e tele lava ina taulai atu i le faʻamaoniga o eseesega faʻapitoa i luga ole laupepa ile DNA methylation e fesoʻotai ma vailaau faʻasolosolo.

O se fesili autu o le tele lea o le suiga o epigenetic e fesoasoani i le atinaʻeina o le phenotype metabolic, nai lo le avea ma se taunuuga o lea mea (Fig. 1). O polokalame a Epigenetic e mafai ona fesoasoani i le atinaʻe o manuʻa, faʻapea foi ma le taʻalo i le aʻafiaga o faʻafitauli o le cardiovascular ma metabolic. I suʻesuʻega a le tagata, e faigata ona faʻamaonia le mafuaʻaga [44], ae e mafai ona faia ni faʻailoga mai ni laina o faʻamaoniga:

fig 1(i) Suʻesuʻega faʻatalanoaga faʻatasi. Genetic polymorphisms that are associated with an increased risk of developing particular conditions are a priori linked to the causative genes. The presence of differential�methylation in such regions infers functional relevance of these epigenetic changes in controlling expression of the proximal gene(s). There are strong cis-acting genetic effects underpinning much epigenetic variation [7, 45], and in population-based studies, methods that use genetic surrogates to infer a causal or mediating role of epigenome differences have been applied [7, 46�48]. The use of familial genetic information can also lead to the identification of potentially causative candidate regions showing phenotype-related differential methylation [49].

(ii) Faʻasologa o suiga o le epigenetic. O le i ai o se epigenetic faailoga ao le i atinaʻeina se phenotype o se mea taua e fesootai ma le mafuaʻaga. I se isi itu, o le i ai o se faailoga i le fesootaʻi ma le oona, ae le o le i amataina lona atinaʻe, e mafai ona faʻaaogaina e faʻalavelave ai le mafuaʻaga ae le mafai ona faʻatagaina se mea e mafai ona faia i togafitiga o le gasegase mulimuli.

(iii) Faʻasalaga faʻaogaina o masini. O lenei mea e faatatau i suiga ole epigenetic e fesootaʻi ma le suia o faʻamatalaga o kenera ma le faʻatulagaina o le matafaioi i le faʻatonutonuina o le phenotype o le tului. O se tasi o faʻataʻitaʻiga o le fesoʻotaʻiga o le methylation i nofoaga e lua o le CpG i le genet CPT1A faʻatasi ai ma vaevaega o triglyceride [50]. CPT1A faʻapipiʻi le carnitine palmitoyltransferase 1A, o le enzyme e iai se vaega tutotonu i le gaosiga o le gaosiga o le gaʻo, ma o lenei mea e matua manino lava o le methylation eseese o lenei gene e mafai ona afaina i suiga i plasma triglyceride concentrations.

Epigenome-Wide Association Studies: Faʻamataina o Epigenetic Biomarkers Of Health Metabolic

A number of recent investigations have focused on exploring associations between obesity/metabolic diseases�and DNA methylation across the genome (Table 2). The largest published EWAS so far, including a total of 5465 individuals, identified 37 methylation sites in blood that were associated with body mass index (BMI), including sites in CPT1A, ABCG1, and SREBF1 [51]. Another large-scale study showed consistent associations between BMI and methylation in HIF3A in whole blood and adipose tissue [52], a finding which was also partially replicated in other studies [9, 51]. Other recently reported associations between obesity-related measures and DNA methylation include (i) DNA methylation differences between lean and feʻaveaʻi individuals in LY86 in blood leukocytes [53]; (ii) associations between PGC1A promoter methylation in whole blood of children and adiposity 5 years later [54]; (iii) associations between waist-hip ratio and ADRB3 methylation in blood [55]; and (iv) associations between BMI, body fat distribution measures, and multiple DNA methylation sites in adipose tissue [9, 56]. EWAS have also shown associations between DNA methylation sites and blood lipids [55, 57�59], serum metabolites [60], insulin resistance [9, 61], and T2DM [48, 62, 63] (Table 2).

laulau 2 faʻatasiMai nei suʻesuʻega, o le methylation fesuiaiga o le PGC1A, HIF3A, ABCG1, ma le CPT1A ma le RXRA [18] na faʻamatalaina talu ai nei na faʻaalia mai o ni tagata e ola faʻatasi ma, pe atonu foi o le, o le soifua maloloina ole soifua maloloina e avea ma sui talafeagai mo le atiina ae o faamai pipisi. .

Fegalegaleaiga i le va o genotype ma le Epigenome

Genotype EpigenomeEpigenetic variation is highly influenced by the underlying genetic variation, with genotype estimated to explain ~20�40 % of the variation [6, 8]. Recently, a number of studies have begun to integrate methylome and genotype data to identify methylation quantitative trait loci (meQTL) associated with disease phenotypes. For instance, in adipose tissue, an meQTL overlapping�with a BMI genetic risk locus has been identified in an enhancer element upstream of ADCY3 [8]. Other studies have also identified overlaps between known obesity and T2DM risk loci and DMRs associated with obesity and T2DM [43, 48, 62]. Methylation of a number of such DMRs was also modulated by high-fat feeding in mice [43] and weight loss in humans [64]. These results identify an intriguing link between genetic variations linked with disease susceptibility and their association with regions of the genome that undergo epigenetic modifications in response to nutritional challenges, implying a causal relationship. The close connection between genetic and epigenetic variation may signify their essential roles in generating individual variation [65, 66]. However, while these findings suggest that DNA methylation may be a mediator of genetic effects, it is also important to consider that both genetic and epigenetic processes could act independently on the same genes. Twin studies [8, 63, 67] can provide important insights and indicate that inter-individual differences in levels of DNA methylation arise predominantly from non-shared environment and stochastic influences, minimally from shared environmental effects, but also with a significant impact of genetic variation.

Le Aafiaga o le Faʻatonu ma le Postnatal Environment On The Epigenome

fomaʻi faataitaiTausaga faʻapitoa: Two recently published studies made use of human populations that experienced �natural� variations in nutrient supply to study the impact of maternal nutrition before or during pregnancy on DNA methylation in the offspring [68, 69]. The first study used a Gambian mother-child cohort to show that both seasonal variations in maternal methyl donor intake during pregnancy and maternal pre-pregnancy BMI were associated with altered methylation in the infants [69]. The second study utilized adult offspring from the Dutch Hunger Winter cohort to investigate the effect of prenatal exposure to an acute period of severe maternal undernutrition on DNA methylation of genes involved in growth and metabolism in adulthood [68]. The results highlighted the importance of the timing of the exposure in its impact on the epigenome, since significant epigenetic effects were only identified in individuals exposed to famine during early gestation. Importantly, the epigenetic changes occurred in conjunction with increased BMI; however, it was not possible to establish in this study whether these changes were present earlier in life or a consequence of the higher BMI.

Other recent studies have provided evidence that prenatal over-nutrition and an obese or diabetic maternal environment are also associated with DNA methylation changes in genes related to embryonic development, growth, and metabolic disease in the offspring [70�73].

E ui e tau le maua e tagata, e iai faʻamaoniga e mafai ona oʻo atu le gaʻo matua i le methylation suia o genes i totonu o le pepe fou [74], o se lagona e tatau ona faʻatalanoa e ala i epigenetic suiga na maua i le spermatogenesis.

pepe o savali i le vao ma palapalaSiosiomaga Faʻasalalauga: The epigenome is established de novo during embryonic development, and therefore, the prenatal environment most likely has the most significant impact on the epigenome. However, it is now clear that changes do occur in the �mature� epigenome under the influence of a range of conditions, including aging, exposure to toxins, and dietary alterations. For example, changes in DNA methylation in numerous genes in skeletal muscle and PGC1A in adipose tissue have been demonstrated in response to a high-fat diet [75, 76]. Interventions to lose body fat mass have also been associated with changes in DNA methylation. Studies have reported that the DNA methylation profiles of adipose tissue [43, 64], peripheral blood mononuclear cells [77], and muscle tissue [78] in formerly obese patients become more similar to the profiles of lean subjects following weight loss. Weight loss surgery also partially reversed non-alcoholic fatty liver disease-associated methylation changes in liver [79] and in another study led to hypomethylation of multiple obesity candidate genes, with more pronounced effects in subcutaneous compared to omental (visceral) fat [64]. Accumulating evidence suggests that exercise interventions can also influence DNA methylation. Most of these studies have been conducted in lean individuals [80�82], but one exercise study in obese T2DM subjects also demonstrated changes in DNA methylation, including in genes involved in fatty acid and glucose transport [83]. Epigenetic changes also occur with aging, and recent data suggest a role of obesity in augmenting them [9, 84, 85]. Obesity accelerated the epigenetic age of liver tissue, but in contrast to the findings described above, this effect was not reversible after weight loss [84].

I le tuufaatasiga, o faamaoniga i le lagolagoina o le gafatia e teuteu ai le epigenome i tagata matutua e fautuaina ai e ono i ai le tulaga e mafai ai ona faalavelave i le olaga mulimuli ina ia suia ai pe suia ai le leaga o le epigenetic programming.

Faʻaleagaina o Tifaga ma Eseesega i le va o Ituaiga Tagata

fesoʻotaʻiga fesoʻotaʻiDNA methylation suiga e fesoʻotaʻi ma le lapoʻa pe faʻatosinaina e le taumafataga poʻo ituaiga olaga ma le paʻu o pauna e masani ona tauagafau (<15%), e ui o lenei e fesuisuiaʻi faʻalagolago i le phenotype ma le tino na suʻesuʻeina. Mo se faʻataʻitaʻiga, o suiga e sili atu nai lo le 20% ua lipotia mai i le adipose tissue ina ua maeʻa le paʻu o le mamafa [64] ma fegalegaleaiga i le va o le HIF3A methylation ma le BMI i le adipose tissue na sili atu ona taua nai lo le toto [52].

O le uiga moni o suiga ole methylation laiti na fesiligia. Ae ui i lea, i totonu o fusi e aofia ai le faʻafefiloi o ituaiga siama, o sina suiga laitiiti i le DNA methylation atonu e atagia ai se suiga taua i se vaega ninii patino. O le tuufaatasia o faʻamatalaga epigenome faʻatasi ai ma le transcriptome ma isi faʻamatalaga epigenetic, e pei o suiga o histone, e taua, talu ai suiga laiti o DNA methylation e mafai ona atagia ai suiga tetele i le chromatin structure ma e mafai ona fesootaʻi atu i suiga lautele i le faʻamatalaga o tagata. O le context genomic e tatau foi ona iloiloina; o suiga laiti i totonu ole tulafono faatonutonu e pei o se tagata e faalauiloa, faaleleia, poo insulator atonu e taua lona taua. I lenei itu, o le DMR mo le oona, faapea foi ma itulagi e aafia i le mateina o le mate ma le meQTL mo le tulaga o le metabolic, ua matauina e aveeseina elemene faaleleia [8, 43, 68]. E i ai le faʻamaoniga e mafai e le DNA methylation i nofoaga e aʻafia ai le afaina ona aʻafia ai le faʻaleleia o le malosi [68], e lagolagoina ai se vaega o suiga o le methylation i le faʻaogaina o meaʻai.

A major limitation in many human studies is that epigenetic marks are often assessed in peripheral blood, rather than in metabolically relevant tissues (Fig. 2). The heterogeneity of blood is an issue, since different cell populations have distinct epigenetic signatures, but algorithms have been developed to estimate the cellular composition to overcome this problem [86]. Perhaps more importantly, epigenetic marks in blood cells may not necessarily report the status of the tissues of primary interest. Despite this, recent studies have provided clear evidence of a relationship between epigenetic marks in blood cells and BMI. In the case of HIF3A for which the level of methylation (beta-value) in the study population ranged from 0.14�0.52, a 10 % increase in methylation was associated with a BMI increase of 7.8 %�[52]. Likewise, a 10 % difference in PGC1A methylation may predict up to 12 % difference in fat mass [54].

fig 2faaiuga

The study of the role of epigenetics in obesity and metabolic disease has expanded rapidly in recent years, and evidence is accumulating of a link between epigenetic modifications and metabolic health outcomes in humans. Potential epigenetic biomarkers associated with obesity and metabolic health have also emerged from recent studies. The validation of epigenetic marks in multiple cohorts, the fact that several marks are found in genes with a plausible function in obesity and T2DM development, as well as the overlap of epigenetic marks with known obesity and T2DM genetic loci strengthens the evidence that these associations are real. Causality has so far been difficult to establish; however, regardless of whether the associations are causal, the identified epigenetic marks may still be relevant as biomarkers for afaina and metabolic disease risk.

Effect sizes in easily accessible tissues such as blood are small but do seem reproducible despite variation in ethnicity, tissue type, and analysis methods [51]. Also, even small DNA methylation changes may have biological significance. An integrative �omics� approach will be crucial in further unraveling the complex interactions between the epigenome, transcriptome, genome, and metabolic health. Longitudinal studies, ideally spanning multiple generations, are essential to establishing causal relationships. We can expect more such studies in the future, but this will take time.

Aʻo faʻaauau pea ona faʻaalia e aʻoga manu se faʻaaogaina o le amataga o le olaga ona lelei exposure on the epigenome and metabolic health of the offspring, human data are still limited. However, recent studies have provided clear�evidence that exposure to suboptimal nutrition during specific periods of prenatal development is associated with methylation changes in the offspring and therefore have the potential to influence adult phenotype. Animal studies will be important to verify human findings in a more controlled setting, help determine whether the identified methylation changes have any impact on metabolic health, and unravel the mechanisms underlying this intergenerational/transgenerational epigenetic regulation. The identification of causal mechanisms underlying metabolic memory responses, the mode of transmission of the phenotypic effects into successive generations, the degree of impact and stability of the transmitted trait, and the identification of an overarching and unifying evolutionary context also remain important questions to be addressed. The latter is often encapsulated by the predictive adaptive response hypothesis, i.e., a response to a future anticipated environment that increases fitness of the population. However, this hypothesis has increasingly been questioned as there is limited evidence for increased fitness later in life [87].

I le aotelega, o taunuʻuga e faʻaleleia, ona o fesoʻotaʻiga epigenetic e fesoʻotaʻi ma le soifua maloloina o tagata matutua ma latou galulue o se puluvaga i le va o le faʻatautaiga o le take o le prenatal ma le faʻateleina o aʻafiaga o taunuʻuga tau le soifua maloloina. O faailoga fou o le epigenetic ua faʻamautuina e fesootaʻi ma fuataga o le soifua maloloina. O le tuufaatasia o ituaiga eseese o faamatalaga o le genomic ua faaopoopo ai le lagolago i fegalegaleaiga o le afaina, ma ua i ai isi suesuega ua faaalia ai aafiaga o le muai ma le postnatal environment i le epigenome ma le soifua maloloina. E ui ina tumau pea le tele o fesili taua, o le alualu i luma o auala lata mai na mafai ai ona avea ituaiga o suʻesuʻega maualuluga lautele o le a manaomia e folasia ai le va o le malamalama. O le isi sefulu tausaga o lumanaʻi o loʻo folafola mai e avea o se vaitau taua tele i lenei nofoaga taua suʻesuʻe.

Susan J. van Dijk1, Ross L. Tellam2, Janna L. Morrison3, Beverly S. Muhlhausler4,5� and Peter L. Molloy1*�

Tauvaga fiafia

Fai mai tusitala e leai ni a latou tauvaga.

Authors� contributions
O tusitala uma na fesoasoani i le tusiaina ma le taua o le toe iloiloga o tusitusiga, ma na tusia e tusitala uma ma faamaonia le tusitusiga mulimuli.

Authors� information
Beverly S. Muhlhausler ma Peter L. Molloy o ni tusitala mulimuli.

Faʻafetai

O lenei galuega ua lagolagoina e se tupe faʻaagaga mai le Faʻalapotopotoga Faʻapitoa mo Faʻaeega Faʻapitoa (Science RP03-064). JLM ma BSM e lagolagoina e le National Health and Medical Research Council Career Development Fellowships (JLM, APP1066916; BSM, APP1004211). Matou te faafetai atu ia Lance Macaulay ma Sue Mitchell mo le taua tele o faitau ma faʻamatalaga i luga o tusitusiga.

Tusitala auiliiliga

1CSIRO Food and Nutrition Flagship, PO Box 52, North Ryde, NSW 1670, Australia. 2CSIRO Agriculture Flagship, 306 Carmody Road, St Lucia, QLD 4067, Australia. 3Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia�4FOODplus Research Centre, Waite Campus, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia. 5Women�s and Children�s Health Research Institute, 72 King William Road, North Adelaide, SA 5006, Australia.

Blank
mau:

1. WHO. WHO | Ova le mamafa ma le puta. www.who.int/gho/ncd/
risk_factors/overweight/en/index.html. Accessed 29 January 2015.
2. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery.
Am J Hum Genet. 2012;90:7�24.
3. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic
studies of body mass index yield new insights for obesity biology. Nature.
2015; 518: 197--206.
4. Ling C, Del Guerra S, Lupi R, R�nn T, Granhall C, Luthman H, et al.
Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and
effect on insulin secretion. Diabetologia. 2008;51:615�22.
5. Van Dijk SJ, Molloy PL, Varinli H, Morrison JL, Muhlhausler BS. Epigenetics
and human obesity. Int J Obes (Lond). 2015;39:85�97.
6. Teh AL, Pan H, Chen L, Ong M-L, Dogra S, Wong J, et al. The effect of
genotype and in utero environment on interindividual variation in neonate
DNA methylomes. Genome Res. 2014;24:1064�74.
7. Olsson AH, Volkov P, Bacos K, Dayeh T, Hall E, Nilsson EA, et al. Genomewide
associations between genetic and epigenetic variation influence
mRNA expression and insulin secretion in human pancreatic islets. PLoS
Genet. 2014;10:e1004735.
8. Grundberg E, Meduri E, Sandling JK, Hedman AK, Keildson S, Buil A, et al.
Global analysis of DNA methylation variation in adipose tissue from twins
reveals links to disease-associated variants in distal regulatory elements.
Am J Hum Genet. 2013;93:876�90.
9. Ronn T, Volkov P, Gillberg L, Kokosar M, Perfilyev A, Jacobsen AL, et al.
Impact of age, BMI and HbA1c levels on the genome-wide DNA
methylation and mRNA expression patterns in human adipose tissue
and identification of epigenetic biomarkers in blood. Hum Mol Genet.
2015; 24: 3792--813.
10. Waterland RA, Michels KB. Epigenetic epidemiology of the developmental
origins hypothesis. Annu Rev Nutr. 2007;27:363�88.
11. McMillen IC, Rattanatray L, Duffield JA, Morrison JL, MacLaughlin SM, Gentili
S, et al. The early origins of later obesity: pathways and mechanisms. Adv
Exp Med Biol. 2009;646:71�81.
12. Ravelli A, van der Meulen J, Michels R, Osmond C, Barker D, Hales C, et al.
Glucose tolerance in adults after prenatal exposure to famine. Lancet.
1998; 351: 173--7.
13. McMillen IC, MacLaughlin SM, Muhlhausler BS, Gentili S, Duffield JL,
Morrison JL. Developmental origins of adult health and disease: the role of
periconceptional and foetal nutrition. Basic Clin Pharmacol Toxicol.
2008; 102: 82--9.
14. Zhang S, Rattanatray L, McMillen IC, Suter CM, Morrison JL. Periconceptional
nutrition and the early programming of a life of obesity or adversity. Prog
Biophys Mol Biol. 2011;106:307�14.
15. Bouret S, Levin BE, Ozanne SE. Gene-environment interactions controlling
energy and glucose homeostasis and the developmental origins of obesity.
Physiol Rev. 2015;95:47�82.
16. Borengasser SJ, Zhong Y, Kang P, Lindsey F, Ronis MJ, Badger TM, et al.
Maternal obesity enhances white adipose tissue differentiation and alters
genome-scale DNA methylation in male rat offspring. Endocrinology.
2013; 154: 4113--25.
17. Gluckman PD, Lillycrop KA, Vickers MH, Pleasants AB, Phillips ES, Beedle AS,
et al. Metabolic plasticity during mammalian development is directionally
dependent on early nutritional status. Proc Natl Acad Sci U S A.
2007; 104: 12796--800.
18. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C,
et al. Epigenetic gene promoter methylation at birth is associated with
child�s later adiposity. Diabetes. 2011;60:1528�34.
19. McMillen IC, Adam CL, Muhlhausler BS. Early origins of obesity:
programming the appetite regulatory system. J Physiol. 2005;565(Pt 1):9�17.
20. Begum G, Stevens A, Smith EB, Connor K, Challis JR, Bloomfield F, et al.
Epigenetic changes in fetal hypothalamic energy regulating pathways are
associated with maternal undernutrition and twinning. FASEB J.
2012; 26: 1694--703.
21. Ge ZJ, Liang QX, Hou Y, Han ZM, Schatten H, Sun QY, et al. Maternal obesity
and diabetes may cause DNA methylation alteration in the spermatozoa of
offspring in mice. Reprod Biol Endocrinol. 2014;12:29.
22. Jousse C, Parry L, Lambert-Langlais S, Maurin AC, Averous J, Bruhat A, et al.
Perinatal undernutrition affects the methylation and expression of the leptin
gene in adults: implication for the understanding of metabolic syndrome.
FASEB J. 2011;25:3271�8.
23. Lan X, Cretney EC, Kropp J, Khateeb K, Berg MA, Penagaricano F, et al.
Maternal diet during pregnancy induces gene expression and DNA
methylation changes in fetal tissues in sheep. Front Genet. 2013;4:49.
24. Li CC, Young PE, Maloney CA, Eaton SA, Cowley MJ, Buckland ME, et al.
Maternal obesity and diabetes induces latent metabolic defects and
widespread epigenetic changes in isogenic mice. Epigenetics. 2013;8:602�11.
25. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein
restriction of pregnant rats induces and folic acid supplementation prevents
epigenetic modification of hepatic gene expression in the offspring. J Nutr.
2005; 135: 1382--6.
26. Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E, et al. In utero
effects. In utero undernourishment perturbs the adult sperm methylome
and intergenerational metabolism. Science. 2014;345(80):1255903.
27. Suter M, Bocock P, Showalter L, Hu M, Shope C, McKnight R, et al.
Epigenomics: maternal high-fat diet exposure in utero disrupts
peripheral circadian gene expression in nonhuman primates. FASEB J.
2011; 25: 714--26.
28. Suter MA, Ma J, Vuguin PM, Hartil K, Fiallo A, Harris RA, et al. In utero
exposure to a maternal high-fat diet alters the epigenetic histone code in a
murine model. Am J Obs Gynecol. 2014;210:463 e1�463 e11.
29. Tosh DN, Fu Q, Callaway CW, McKnight RA, McMillen IC, Ross MG, et al.
Epigenetics of programmed obesity: alteration in IUGR rat hepatic IGF1
mRNA expression and histone structure in rapid vs. delayed postnatal
catch-up growth. Am J Physiol Gastrointest Liver Physiol.
2010;299:G1023�9.
30. Sandovici I, Smith NH, Nitert MD, Ackers-Johnson M, Uribe-Lewis S, Ito Y,
et al. Maternal diet and aging alter the epigenetic control of a promoterenhancer
interaction at the Hnf4a gene in rat pancreatic islets. Proc Natl
Acad Sci U S A. 2011;108:5449�54.
31. Braunschweig M, Jagannathan V, Gutzwiller A, Bee G. Investigations on
transgenerational epigenetic response down the male line in F2 pigs. PLoS
One. 2012;7, e30583.
32. Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, et al. Paternally
induced transgenerational environmental reprogramming of metabolic
gene expression in mammals. Cell. 2010;143:1084�96.
33. Ost A, Lempradl A, Casas E, Weigert M, Tiko T, Deniz M, et al. Paternal diet
defines offspring chromatin state and intergenerational obesity. Cell.
2014; 159: 1352--64.
34. Mart�nez D, Pentinat T, Rib� S, Daviaud C, Bloks VW, Cebri� J, et al. In utero
undernutrition in male mice programs liver lipid metabolism in the secondgeneration
offspring involving altered Lxra DNA methylation. Cell Metab.
2014; 19: 941--51.
35. Wei Y, Yang C-R, Wei Y-P, Zhao Z-A, Hou Y, Schatten H, et al. Paternally
induced transgenerational inheritance of susceptibility to diabetes in
mammals. Proc Natl Acad Sci U S A. 2014;111:1873�8.
36. Grossniklaus U, Kelly WG, Kelly B, Ferguson-Smith AC, Pembrey M, Lindquist
S. Transgenerational epigenetic inheritance: how important is it? Nat Rev
Genet. 2013;14:228�35.
37. Pembrey M, Saffery R, Bygren LO. Human transgenerational responses to
early-life experience: potential impact on development, health and
biomedical research. J Med Genet. 2014;51:563�72.
38. Wolff GL, Kodell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl
supplements affect agouti gene expression in Avy/a mice. FASEB J.
1998; 12: 949--57.
39. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility.
Nat Rev Genet. 2007;8:253�62.
40. Morgan HD, Sutherland HG, Martin DI, Whitelaw E. Epigenetic inheritance at
the agouti locus in the mouse. Nat Genet. 1999;23:314�8.
41. Cropley JE, Suter CM, Beckman KB, Martin DI. Germ-line epigenetic
modification of the murine A vy allele by nutritional supplementation. Proc
Natl Acad Sci U S A. 2006;103:17308�12.
42. Hoile SP, Lillycrop KA, Thomas NA, Hanson MA, Burdge GC. Dietary protein
restriction during F0 pregnancy in rats induces transgenerational changes in
the hepatic transcriptome in female offspring. PLoS One. 2011;6, e21668.
43. Multhaup ML, Seldin MM, Jaffe AE, Lei X, Kirchner H, Mondal P, et al. Mousehuman
experimental epigenetic analysis unmasks dietary targets and
genetic liability for diabetic phenotypes. Cell Metab. 2015;21:138�49.
44. Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM, Gut I, et al.
Recommendations for the design and analysis of epigenome-wide
association studies. Nat Methods. 2013;10:949�55.
45. Dayeh TA, Olsson AH, Volkov P, Almgren P, R�nn T, Ling C. Identification of
CpG-SNPs associated with type 2 diabetes and differential DNA methylation
in human pancreatic islets. Diabetologia. 2013;56:1036�46.
46. Relton CL, Davey Smith G. Two-step epigenetic Mendelian randomization: a
strategy for establishing the causal role of epigenetic processes in pathways
to disease. Int J Epidemiol. 2012;41:161�76.
47. Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, et al.
Epigenome-wide association data implicate DNA methylation as an
intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol.
2013; 31: 142--7.
48. Yuan W, Xia Y, Bell CG, Yet I, Ferreira T, Ward KJ, et al. An integrated
epigenomic analysis for type 2 diabetes susceptibility loci in monozygotic
twins. Nat Commun. 2014;5:5719.
49. Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, et al. Impact of an
exercise intervention on DNA methylation in skeletal muscle from firstdegree
relatives of patients with type 2 diabetes. Diabetes. 2012;61:3322�32.
50. Gagnon F, A�ssi D, Carri� A, Morange P-E, Tr�gou�t D-A. Robust validation of
methylation levels association at CPT1A locus with lipid plasma levels.
J Lipid Res. 2014;55:1189�91.
51. Demerath EW, Guan W, Grove ML, Aslibekyan S, Mendelson M, Zhou Y-H,
et al. Epigenome-wide association atudy (EWAS) of BMI, BMI change, and
waist circumference in African American adults identifies multiple replicated
loci. Hum Mol Genet. 2015:ddv161�.
52. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, A�ssi D, Wahl S, et al. DNA
methylation and body-mass index: a genome-wide analysis. Lancet.
2014; 6736: 1--9.
53. Su S, Zhu H, Xu X, Wang X, Dong Y, Kapuku G, et al. DNA methylation of
the LY86 gene is associated with obesity, insulin resistance, and
inflammation. Twin Res Hum Genet. 2014;17:183�91.
54. Clarke-Harris R, Wilkin TJ, Hosking J, Pinkney J, Jeffery AN, Metcalf BS, et al.
PGC1? promoter methylation in blood at 5�7 years predicts adiposity from
9 to 14 years (EarlyBird 50). Diabetes. 2014;63:2528�37.
55. Guay S-P, Brisson D, Lamarche B, Biron S, Lescelleur O, Biertho L, et al.
ADRB3 gene promoter DNA methylation in blood and visceral adipose
tissue is associated with metabolic disturbances in men. Epigenomics.
2014; 6: 33--43.
56. Agha G, Houseman EA, Kelsey KT, Eaton CB, Buka SL, Loucks EB. Adiposity is
associated with DNA methylation profile in adipose tissue. Int J Epidemiol.
2014: 1--11.
57. Irvin MR, Zhi D, Joehanes R, Mendelson M, Aslibekyan S, Claas SA, et al.
Epigenome-wide association study of fasting blood lipids in the genetics of
lipid-lowering drugs and diet network study. Circulation. 2014;130:565�72.
58. Frazier-Wood AC, Aslibekyan S, Absher DM, Hopkins PN, Sha J, Tsai MY, et al.
Methylation at CPT1A locus is associated with lipoprotein subfraction
profiles. J Lipid Res. 2014;55:1324�30.
59. Pfeifferm L, Wahl S, Pilling LC, Reischl E, Sandling JK, Kunze S, et al. DNA
methylation of lipid-related genes affects blood lipid levels. Circ Cardiovasc
Genet. 2015.
60. Petersen A-K, Zeilinger S, Kastenm�ller G, R�misch-Margl W, Brugger M, Peters
A, et al. Epigenetics meets metabolomics: an epigenome-wide association
study with blood serum metabolic traits. Hum Mol Genet. 2014;23:534�45.
61. Hidalgo B, Irvin MR, Sha J, Zhi D, Aslibekyan S, Absher D, et al. Epigenomewide
association study of fasting measures of glucose, insulin, and HOMA-IR
in the genetics of lipid lowering drugs and diet network study. Diabetes.
2014; 63: 801--7.
62. Dayeh T, Volkov P, Sal� S, Hall E, Nilsson E, Olsson AH, et al. Genome-wide
DNA methylation analysis of human pancreatic islets from type 2 diabetic
and non-diabetic donors identifies candidate genes that influence insulin
secretion. PLoS Genet. 2014;10, e1004160.
63. Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, Svensson MK, et al.
Altered DNA methylation and differential expression of genes influencing
metabolism and inflammation in adipose tissue from subjects with type 2
diabetes. Diabetes. 2014;63:2962�76.
64. Benton MC, Johnstone A, Eccles D, Harmon B, Hayes MT, Lea RA, et al. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight
loss. Gene. 2015;16:1�21.
65. Bateson P, Gluckman P. Plasticity and robustness in development and
evolution. Int J Epidemiol. 2012;41:219�23.
66. Feinberg AP, Irizarry RA, Feinberg AP, Irizarry RA. Evolution in health and
medicine Sackler colloquium: stochastic epigenetic variation as a driving
force of development, evolutionary adaptation, and disease. Proc Natl Acad
Sci U S A. 2010;107(Suppl):1757�64.
67. Martino D, Loke YJ, Gordon L, Ollikainen M, Cruickshank MN, Saffery R, et al.
Longitudinal, genome-scale analysis of DNA methylation in twins from birth
to 18 months of age reveals rapid epigenetic change in early life and pairspecific
effects of discordance. Genome Biol. 2013;14:R42.
68. Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, et al. DNA
methylation signatures link prenatal famine exposure to growth and
metabolism. Nat Commun. 2014;5:5592.
69. Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, et al.
Maternal nutrition at conception modulates DNA methylation of human
metastable epialleles. Nat Commun. 2014;5:3746.
70. Quilter CR, Cooper WN, Cliffe KM, Skinner BM, Prentice PM, Nelson L, et al.
Impact on offspring methylation patterns of maternal gestational diabetes
mellitus and intrauterine growth restraint suggest common genes and
pathways linked to subsequent type 2 diabetes risk. FASEB J. 2014:1�12.
71. Morales E, Groom A, Lawlor DA, Relton CL. DNA methylation signatures in
cord blood associated with maternal gestational weight gain: results from
the ALSPAC cohort. BMC Res Notes. 2014;7:278.
72. Ruchat SM, Houde AA, Voisin G, St-Pierre J, Perron P, Baillargeon JP, et al.
Gestational diabetes mellitus epigenetically affects genes predominantly
involved in metabolic diseases. Epigenetics. 2013;8:935�43.
73. Liu X, Chen Q, Tsai H-J, Wang G, Hong X, Zhou Y, et al. Maternal
preconception body mass index and offspring cord blood DNA
methylation: exploration of early life origins of disease. Environ Mol
Mutagen. 2014;55:223�30.
74. Soubry A, Murphy SK, Wang F, Huang Z, Vidal AC, Fuemmeler BF, et al.
Newborns of obese parents have altered DNA methylation patterns at
imprinted genes. Int J Obes (Lond). 2015;39:650�7.
75. Jacobsen SC, Br�ns C, Bork-Jensen J, Ribel-Madsen R, Yang B, Lara E, et al.
Effects of short-term high-fat overfeeding on genome-wide DNA
methylation in the skeletal muscle of healthy young men. Diabetologia.
2012; 55: 3341--9.
76. Gillberg L, Jacobsen SC, R�nn T, Br�ns C, Vaag A. PPARGC1A DNA
methylation in subcutaneous adipose tissue in low birth weight subjects�
impact of 5 days of high-fat overfeeding. Metabolism. 2014;63:263�71.
77. Huang Y-T, Maccani JZJ, Hawley NL, Wing RR, Kelsey KT, McCaffery JM.
Epigenetic patterns in successful weight loss maintainers: a pilot study. Int J
Obes (Lond). 2015;39:865�8.
78. Barres R, Kirchner H, Rasmussen M, Yan J, Kantor FR, Krook A, N�slund E,
Zierath JR. Weight loss after gastric bypass surgery in human obesity
remodels promoter methylation. Cell Rep. 2013:1�8.
79. Ahrens M, Ammerpohl O, von Sch�nfels W, Kolarova J, Bens S, Itzel T, et al.
DNA methylation analysis in nonalcoholic fatty liver disease suggests
distinct disease-specific and remodeling signatures after bariatric surgery.
Cell Metab. 2013;18:296�302.
80. Voisin S, Eynon N, Yan X, Bishop DJ. Exercise training and DNA methylation
in humans. Acta Physiol (Oxf). 2014;213:39�59.
81. Lindholm ME, Marabita F, Gomez-Cabrero D, Rundqvist H, Ekstr�m TJ,
Tegn�r J, et al. An integrative analysis reveals coordinated reprogramming
of the epigenome and the transcriptome in human skeletal muscle after
training. Epigenetics. 2014;9:1557�69.
82. Denham J, O�Brien BJ, Marques FZ, Charchar FJ. Changes in the leukocyte
methylome and its effect on cardiovascular related genes after exercise.
J Appl Physiol. 2014:jap.00878.2014.
83. Rowlands DS, Page RA, Sukala WR, Giri M, Ghimbovschi SD, Hayat I, et al.
Multi-omic integrated networks connect DNA methylation and miRNA with
skeletal muscle plasticity to chronic exercise in type 2 diabetic obesity.
Physiol Genomics. 2014;46:747�65.
84. Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schonfels W, Ahrens M,
et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad
Sci. 2014;111:15538�43.
85. Alm�n MS, Nilsson EK, Jacobsson JA, Kalnina I, Klovins J, Fredriksson R, et al.
Genome-wide analysis reveals DNA methylation markers that vary with
both age and obesity. Gene. 2014.;548:61�7
86. Houseman EA, Molitor J, Marsit CJ. Reference-free cell mixture adjustments
in analysis of DNA methylation data. Bioinformatics. 2014;30:1431�9.
87. Wells JC. A critical appraisal of the predictive adaptive response hypothesis.
Int J Epidemiol. 2012;41:229�35.
88. Williams-Wyss O, Zhang S, MacLaughlin SM, Kleemann D, Walker SK, Suter
CM, et al. Embryo number and periconceptional undernutrition in the
sheep have differential effects on adrenal epigenotype, growth, and
development. Am J Physiol Endocrinol Metab. 2014;307:E141�50.
89. Zhang S, Rattanatray L, Morrison JL, Nicholas LM, Lie S, McMillen IC.
Maternal obesity and the early origins of childhood obesity: weighing up
the benefits and costs of maternal weight loss in the periconceptional
period for the offspring. Exp Diabetes Res. 2011;2011:585749.
90. Zhang S, Williams-Wyss O, MacLaughlin SM, Walker SK, Kleemann DO, Suter
CM, et al. Maternal undernutrition during the first week after conception
results in decreased expression of glucocorticoid receptor mRNA in the
absence of GR exon 17 hypermethylation in the fetal pituitary in late
gestation. J Dev Orig Heal Dis. 2013;4:391�401.
91. Lie S, Morrison JL, Williams-Wyss O, Suter CM, Humphreys DT, Ozanne SE,
et al. Periconceptional undernutrition programs changes in insulin-signaling
molecules and microRNAs in skeletal muscle in singleton and twin fetal
sheep. Biol Reprod. 2014;90:5.
92. Van Straten EM, van Meer H, Huijkman NC, van Dijk TH, Baller JF, Verkade
HJ, et al. Fetal liver X receptor activation acutely induces lipogenesis but
does not affect plasma lipid response to a high-fat diet in adult mice. Am J
Physiol Endocrinol Metab. 2009;297:E1171�8.
93. Fernandez-Twinn DS, Alfaradhi MZ, Martin-Gronert MS, Duque-Guimaraes
DE, Piekarz A, Ferland-McCollough D, et al. Downregulation of IRS-1 in
adipose tissue of offspring of obese mice is programmed cellautonomously
through post-transcriptional mechanisms. Mol Metab.
2014; 3: 325--33.
94. Waterland RA, Travisano M, Tahiliani KG. Diet-induced hypermethylation at
agouti viable yellow is not inherited transgenerationally through the female.
FASEB J. 2007;21:3380�5.
95. Ge ZJ, Luo SM, Lin F, Liang QX, Huang L, Wei YC, et al. DNA methylation in
oocytes and liver of female mice and their offspring: effects of high-fat-dietinduced
obesity. Env Heal Perspect. 2014;122:159�64.
96. Ollikainen M, Ismail K, Gervin K, Kyll�nen A, Hakkarainen A, Lundbom J, et al.
Genome-wide blood DNA methylation alterations at regulatory elements
and heterochromatic regions in monozygotic twins discordant for obesity
and liver fat. Clin Epigenetics. 2015;7:1�13.

Tapuni Faʻatasiga